215 research outputs found

    Selective interactions in trapped ions: state reconstruction and quantum logic

    Full text link
    We propose the implementation of selective interactions of atom-motion subspaces in trapped ions. These interactions yield resonant exchange of population inside a selected subspace, leaving the others in a highly dispersive regime. Selectivity allows us to generate motional Fock (and other nonclassical) states with high purity out of a wide class of initial states, and becomes an unconventional cooling mechanism when the ground state is chosen. Individual population of number states can be distinctively measured, as well as the motional Wigner function. Furthermore, a protocol for implementing quantum logic through a suitable control of selective subspaces is presented.Comment: 4 revtex4 pages and 2 eps figures. Submitted for publicatio

    Distinguishing two single-mode Gaussian states by homodyne detection: An information-theoretic approach

    Full text link
    It is known that the quantum fidelity, as a measure of the closeness of two quantum states, is operationally equivalent to the minimal overlap of the probability distributions of the two states over all possible POVMs; the POVM realizing the minimum is optimal. We consider the ability of homodyne detection to distinguish two single-mode Gaussian states, and investigate to what extent it is optimal in this information-theoretic sense. We completely identify the conditions under which homodyne detection makes an optimal distinction between two single-mode Gaussian states of the same mean, and show that if the Gaussian states are pure, they are always optimally distinguished.Comment: 6 pages, 4 figures, published version with a detailed discussio

    Quantum Teleportation of Light

    Full text link
    Requirements for the successful teleportation of a beam of light, including its temporal correlations, are discussed. Explicit expressions for the degrees of first- and second-order optical coherence are derived. Teleportation of an antibunched photon stream illustrates our results.Comment: 4 pages, 5 figure

    Phonon arithmetic in a trapped ion system

    Get PDF
    Single-quantum level operations are important tools to manipulate a quantum state. Annihilation or creation of single particles translates a quantum state to another by adding or subtracting a particle, depending on how many are already in the given state. The operations are probabilistic and the success rate has yet been low in their experimental realization. Here we experimentally demonstrate (near) deterministic addition and subtraction of a bosonic particle, in particular a phonon of ionic motion in a harmonic potential. We realize the operations by coupling phonons to an auxiliary two-level system and applying transitionless adiabatic passage. We show handy repetition of the operations on various initial states and demonstrate by the reconstruction of the density matrices that the operations preserve coherences. We observe the transformation of a classical state to a highly non-classical one and a Gaussian state to a non-Gaussian one by applying a sequence of operations deterministically

    Quantum linear amplifier enhanced by photon subtraction and addition

    Get PDF
    A deterministic quantum amplifier inevitably adds noise to an amplified signal due to the uncertainty principle in quantum physics. We here investigate how a quantum-noise-limited amplifier can be improved by additionally employing the photon subtraction, the photon addition, and a coherent superposition of the two, thereby making a probabilistic, heralded, quantum amplifier. We show that these operations can enhance the performance in amplifying a coherent state in terms of intensity gain, fidelity, and phase uncertainty. In particular, the photon subtraction turns out to be optimal for the fidelity and the phase concentration among these elementary operations, while the photon addition also provides a significant reduction in the phase uncertainty with the largest gain effect.Comment: published version, 7 pages, 9 figure

    Squeezing enhancement by damping in a driven atom-cavity system

    Get PDF
    In a driven atom-cavity coupled system in which the two-level atom is driven by a classical field, the cavity mode which should be in a coherent state in the absence of its reservoir, can be squeezed by coupling to its reservoir. The squeezing effect is enhanced as the damping rate of the cavity is increased to some extent.Comment: 3 pages and 3 figure

    Linear amplification and quantum cloning for non-Gaussian continuous variables

    Get PDF
    We investigate phase-insensitive linear amplification at the quantum limit for single- and two-mode states and show that there exists a broad class of non-Gaussian states whose nonclassicality survives even at an arbitrarily large gain. We identify the corresponding observable nonclassical effects and find that they include, remarkably, two-mode entanglement. The implications of our results for quantum cloning outside the Gaussian regime are also addressed.Comment: published version with reference updat

    Optimal estimation of joint parameters in phase space

    Get PDF
    We address the joint estimation of the two defining parameters of a displacement operation in phase space. In a measurement scheme based on a Gaussian probe field and two homodyne detectors, it is shown that both conjugated parameters can be measured below the standard quantum limit when the probe field is entangled. We derive the most informative Cram\'er-Rao bound, providing the theoretical benchmark on the estimation and observe that our scheme is nearly optimal for a wide parameter range characterizing the probe field. We discuss the role of the entanglement as well as the relation between our measurement strategy and the generalized uncertainty relations.Comment: 8 pages, 3 figures; v2: references added and sections added to the supplemental material; v3: minor changes (published version

    Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

    Get PDF
    Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of carbon nanotube field effect transistor (CNTFET). In this work, we present results of Monte Carlo simulation of a coaxially gated CNTFET including electron-phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of electron mean-free-path. To highlight the potential of high performance level of CNTFET, we then perform a study of DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of Si nanowire MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad. Sci. Pari
    • …
    corecore